If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2-23x-72=0
a = 35; b = -23; c = -72;
Δ = b2-4ac
Δ = -232-4·35·(-72)
Δ = 10609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10609}=103$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-103}{2*35}=\frac{-80}{70} =-1+1/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+103}{2*35}=\frac{126}{70} =1+4/5 $
| 2-9b=79 | | -(k-14)=0 | | 10-1.15=n | | 5(3-x)+(3-x)=14 | | 4v=567 | | 3^5y+2=27^2y+1 | | 6x+16=4x-6 | | -17=1/5m-20 | | 3(b-14)-4=2 | | x*8=12 | | 4(g+1)-1=11 | | 4(g+1-1=11 | | 3x+6=-1×+6 | | -5+x/9=-4 | | 6x-48=4x+12 | | -5x/9=-4 | | x+2.4=19 | | 7/2(x-0.5)=5 | | 3+(7+10)=g+30 | | 9x-4=-103 | | -15-4x=11 | | 5+.04m=2+.10m | | (1/2)(x-7)=5 | | 5x-4=3(x+4)x= | | 38x+40+120x=34x-7(20-19x) | | 10x+18+13x=180 | | 2b-34=-8 | | 5(3n–2)=10n | | m/5-12=6 | | 7a+18=108 | | 5+x/10=7 | | 14x+7=217 |